



Remember the past: A comparison of time-adaptive training schemes for non-homogeneous regression

Moritz N. Lang, Sebastian Lerch, Georg J. Mayr, Thorsten Simon, Reto Stauffer, and Achim Zeileis

## Probabilistic forecasting



## Probabilistic forecasting



- Probabilistic forecasts quantify the uncertainty of the predictions.
- Aims: Calibration and sharpness.



Ensemble mean

- Response y is assumed to follow a predefined parametric distribution, e.g., normal distribution.
- The two distribution parameters location and scale are expressed by a linear function of covariates x<sub>1</sub>...x<sub>(k+l)</sub>:

$$\mathbf{y} \sim \mathcal{N}(\mu, \sigma)$$
$$\mu = \beta_0 + \beta_1 \cdot \mathbf{x}_1 + \ldots + \beta_k \cdot \mathbf{x}_k$$
$$\log(\sigma) = \gamma_0 + \gamma_1 \cdot \mathbf{x}_{(k+1)} + \ldots + \gamma_l \cdot \mathbf{x}_{(k+l)}$$





- Response y is assumed to follow a predefined parametric distribution, e.g., normal distribution.
- The two distribution parameters location and scale are expressed by a linear function of covariates x<sub>1</sub>...x<sub>(k+l)</sub>:

$$\mathbf{y} \sim \mathcal{N}(\mu, \sigma)$$
$$\mu = \beta_0 + \beta_1 \cdot \mathbf{x}_1 + \ldots + \beta_k \cdot \mathbf{x}_k$$
$$\log(\sigma) = \gamma_0 + \gamma_1 \cdot \mathbf{x}_{(k+1)} + \ldots + \gamma_l \cdot \mathbf{x}_{(k+l)}$$



Ensemble mean

- Response y is assumed to follow a predefined parametric distribution, e.g., normal distribution.
- The two distribution parameters location and scale are expressed by the **ensemble mean** *m* and **ensemble standard deviation** *s* of the corresponding NWP of the response:

$$y \sim \mathcal{N}(\mu, \sigma)$$
$$\mu = \beta_0 + \beta_1 \cdot m$$
$$og(\sigma) = \gamma_0 + \gamma_1 \cdot s$$



Ensemble mean

- Response y is assumed to follow a predefined parametric distribution, e.g., normal distribution.
- The two distribution parameters location and scale are expressed by the **ensemble mean** *m* and **ensemble standard deviation** *s* of the corresponding NWP of the response:

$$y \sim \mathcal{N}(\mu, \sigma)$$
$$\mu = \beta_0 + \beta_1 \cdot m$$
$$og(\sigma) = \gamma_0 + \gamma_1 \cdot s$$

#### $\Rightarrow$ How to account for seasonally varying regression coefficients?

To adjust for seasonally varying error characteristics between covariates (ensemble forecasts) and response:

• **Sliding-window** uses previous *n* days for model training.

- Sliding-window uses previous *n* days for model training.
- Regularized sliding-window adds regularization in model estimation.

- Sliding-window uses previous *n* days for model training.
- **Regularized sliding-window** adds regularization in model estimation.
- **Sliding-window plus** uses 2*n* days centered around the same calendar day over all previous years for model training.

- Sliding-window uses previous *n* days for model training.
- **Regularized sliding-window** adds regularization in model estimation.
- **Sliding-window plus** uses 2*n* days centered around the same calendar day over all previous years for model training.
- **Smooth model** uses all available days for model training by allowing coefficients to smoothly evolve over the year.



## Surface temperature forecasting

#### Location parameter



## Surface temperature forecasting

#### **Location parameter**



## Surface temperature forecasting Scale parameter



## Surface temperature forecasting Scale parameter



# Surface temperature forecasting Validation setup

Response:

• 2 m temperature forecasts at five weather stations located in the plain of northern Germany.

Covariates:

- Ensemble mean *m* and the ensemble standard deviation *s* of bilinearly interpolated 2 m temperature forecasts issued by the ECMWF.
- Considered forecast steps from +12 to +72 h, at a 12-hourly temporal resolution (00:00 UTC run).

## Surface temperature forecasting

#### Validation setup



## Surface temperature forecasting Validation results



## Summary

• "Remembering the past" from multiple years of training data stabilizes and improves the calibration.

## Summary

- "Remembering the past" from multiple years of training data stabilizes and improves the calibration.
- In case of certain ensemble model changes, using multiple years of training data is still superior to the classical sliding-window approach.

## Summary

- "Remembering the past" from multiple years of training data stabilizes and improves the calibration.
- In case of certain ensemble model changes, using multiple years of training data is still superior to the classical sliding-window approach.
- Reducing the variance of the regression estimates appears to be more important than adjusting rapidly for changing forecast biases.

### References

Gneiting, T., Raftery, A. E., Westveld III, A. H., and Goldman, T.: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation, *Mon. Weather Rev.*, **133**, 1098–1118, doi:10.1175/MWR2904.1, 2005.

Möller, A., Spazzini, L., Kraus, D., Nagler, T., and Czado, C.: Vine copula based post-processing of ensemble forecasts for temperature, arXiv 1811.02255, *arXiv.org E-Print Archive*, in review, 2018.

Scheuerer, M.: Probabilistic quantitative precipitation forecasting using ensemble model output statistics, *Q. J. Roy. Meteor. Soc.*, **140**, 1086–1096, doi:10.1002/qj.2183, 2014.

Vogel, P., Knippertz, P., Fink, A. H., Schlueter, A., and Gneiting, T.: Skill of global raw and postprocessed ensemble predictions of rainfall over northern tropical Africa, *Weather Forecast.*, **33**, 369–388, doi:10.1175/waf-d-17-0127.1, 2018.



Lang, M. N., Lerch, S., Mayr, G. J., Simon, T., Stauffer, R., and Zeileis, A.: Remember the past: A comparison of time-adaptive training schemes for non-homogeneous regression, *Nonlin. Processes Geophys.*, **27**, 23–34, doi:10.5194/npg-27-23-2020, 2020.

🔽 moritz.lang@uibk.ac.at 🛛 🕊 MoritzNLang